Y6: PROMPT sheet

6/1 Place value in numbers to 10million

The position of the digit gives its size

Ten millions	Millions	Hundred thousands	Ten thousands	thousands	hundreds	tens	units
1	2	3	4	5	6	7	8

Example

The value of the digit '1' is 10 000 000
The value of the digit '2' is 2 000 000
The value of the digit '3' is 300 000
The value of the digit '4' is 40 000

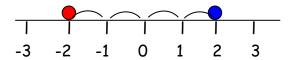
6/1 Round whole numbers

Example 1- Round 342 679 to the nearest 10 000

- Step 1 Find the 'round-off digit' 4
- Step 2 Move one digit to the right 2

4 or less? YES - leave 'round off digit' unchanged - Replace following digits with zeros

ANSWER - 340 000


Example 2- Round 345 679 to the nearest 10 000

- Step 1 Find the 'round-off digit' 4
- Step 2 Move one digit to the right 5

5 or more? YES - add one to 'round off digit'
- Replace following digits with zeros

ANSWER - 350 000

6/2 Negative numbers

The difference between 2 and -2 = 4 (see line)

Remember the rules:

- When subtracting go down the number line
- When adding go up the number line
- 8 + 2 is the same as 8 2 = 6
- 8 + 2 is the same as 8 2 = 6
- 8 2 is the same as 8 + 2 = 10

6/3 Multiply numbers & estimate to check

6/3 Use estimates to check calculations

152 x 34 ≈150 x 30 ≈4500

≈ is the symbol for 'roughly equals'

6/3 Divide numbers & estimate to check

With a remainder also expressed as a fraction

e.g.
$$4928 \div 32$$

$$\begin{array}{r}
028\\15)432\\
-30 \downarrow\\
132\\
-120\\
12\\
ANSWER - 432 \div 15 = 28 \text{ r } 12\\
=28\frac{12}{12}
\end{array}$$

6/3 continued

With a remainder expressed as a decimal

6/3 Use estimates to check calculations

3

4

6/4 Factors, multiples & primes

FACTORS are what divides exactly into a number

3

6

e.g. Factors of 12 are: Factors of 18 are: 1 12 1 18 2 9

The common factors of 12 & 18 are: 1, 2, 3, 6, The Highest Common Factor is: 6

PRIME NUMBERS have only TWO factors

e.g. Factors of 7 are: Factors of 13 are
$$\boxed{1 \quad 7}$$

So 7 and 13 are both prime numbers

• MULTIPLES are the times table answers

e.q	e.g. Multiples of 5 are:				Μ	ulti	ples	of 4	lare:
5	10	15	20	25	4	8	12	16	20

The Lowest Common Multiple of 5 and 4 is: 20

6/5 Order of operations

Bracket
Indices
Divide
Multiply
Add
Subtract

Do these in the order they appear

e.g.
$$3 + \frac{4 \times 6}{4 \times 6} - 5 = 22$$

first

(2+1) × 3 = 9

first

6/6 Addition

• Line up the digits in the correct columns

6/6 Subtraction

• Line up the digits in the correct columns

6/7 Equivalent fractions

• To simplify a fraction Example: $\frac{27}{36}$

First find the highest common factor of the numerator and denominator – which is 9, then divide

$$\frac{27}{36}$$
 = $\frac{3}{4}$

To change fractions to the same denominator

Example:
$$\frac{3}{4}$$
 and $\frac{2}{3}$

Find the highest common multiple of the denominators - which is 12, then multiply:

$$\frac{3^{-2}}{4} = \frac{9}{12}$$
 and $\frac{2^{-4}}{3} = \frac{8}{12}$

6/8 Add & subtract fractions

Make the denominators the same

e.g. $\frac{1}{5} + \frac{7}{10}$	e.g. $\frac{4}{5} - \frac{2}{3}$
$=\frac{2}{10} + \frac{7}{10}$	$= \frac{12}{15} - \frac{10}{15}$
$= \frac{3}{10}$	$= \frac{2}{15}$ Do not add denominators

6/9 Multiply fractions

- \circ Write 5 as $\frac{5}{1}$
- Multiply numerators & denominators

e.g.
$$5 \times \frac{2}{3}$$

 $= \frac{5}{1} \times \frac{2}{3}$
 $= \frac{10}{3} = 3\frac{1}{3}$
e.g. $\frac{4}{5} \times \frac{2}{3}$
 $= \frac{8}{15}$

6/9 Divide fractions

- \circ Write 5 as $\frac{5}{1}$
- o Invert the fraction after ÷ sign
- o Multiply numerators & denominators

| e.g.
$$\frac{2}{3} \div 5$$
 | e.g. $\frac{4}{5} \div \frac{2}{3}$ | $= \frac{3}{2} \times \frac{1}{5}$ | $= \frac{4}{5} \times \frac{3}{2}$ | $= \frac{12}{10} = \mathbf{1} \cdot \frac{1}{5}$

thousands	hundreds	tens	units	•	tenths	hundredths	thousandths	
4	3	5	2	•	6	1	7	

6/10 Multiply/divide decimals by 10, 100

• To multiply by 10, move each digit one place to the left

e.g. $35.6 \times 10 = 356$

Hundreds	Tens	Units	•	tenths
	_ 3	_ 5	•	- 6
3 4	5 🖍	6 🖍	•	

 To divide by 10, move each digit one place to the right

Tens	Units	•	tenths	hundredths
3 <	5 5 ;	•	6 /	
	1 3	•	5	6

- To multiply by 100, move each digit 2 places to the left
- To divide by 100, move each digit 2 places to the right

AN ALTERNATE METHOD

Instead of moving the <u>digits</u>
Move the <u>decimal point the opposite way</u>

6/11 Multiply decimals

Step 1 - remove the decimal point Step 2 - multiply the two numbers Step 3 - Put the decimal back in

Example: 0.06 x 8 => 6 x 8 => 48 => 0.48

6/11 Divide decimals

Use the bus shelter method Keep the decimal point in the same place Add zeros for remainders

6/12 Fraction, decimal, percentage equivalents

LEARN THESE:

$$\frac{1}{4}$$
 = 0.25 = 25%

$$\frac{1}{2}$$
 = 0.5 = 50%

$$\frac{3}{4}$$
 = 0.75 = 75%

$$\frac{1}{10}$$
 = 0.1 = 10%

• Percentage to decimal to fraction

$$27\% = 0.27 = \frac{27}{100}$$

7% = 0.07 =
$$\frac{7}{100}$$

$$70\% = 0.7 = \frac{70}{100} = \frac{7}{10}$$

• Decimal to percentage to fraction

$$0.3 = 30\% = \frac{3}{10}$$

$$0.03 = 3\% = \frac{3}{100}$$

$$0.39 = 39\% = \frac{39}{100}$$

Fraction to decimal to percentage

$$\frac{4}{5} = \frac{80}{100} = 80\% = 0.8$$

Change to 100

$$\frac{0.375}{8} = 3 \div 8 = 8) 3.306040 = 0.375 = 37.5\%$$

$$\frac{9}{12} = \frac{3}{4} = 0.75 = 75\%$$

6/13 Fraction of quantity

•
$$\frac{4}{5}$$
 means ÷ $\frac{5}{5}$ × $\frac{4}{5}$

e.g. To find
$$\underline{4}$$
 of $\underline{£}40$
5
£40 ÷ 5 x 4 = £40

- 6/13 Percentage of quantity

Use only

$$\circ$$
 50% - $\frac{1}{2}$

$$\circ$$
 10% - $\frac{1}{10}$

$$\circ$$
 1% - $\frac{1}{100}$

Example: To find 35% of £400

10% = £40

20% = £80

5% = £20

35% = £140

6/14 Similar shapes

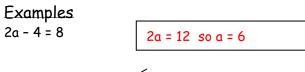
When a shape is enlarged by a scale factor the two shapes are called SIMILAR shapes

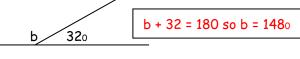
Scale factor = $6 \div 3 = 2$ Length a = $5 \times 2 = 10$ cm Length b = $8 \div 2 = 4$ cm

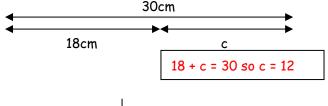
6/14 Unequat sharing –

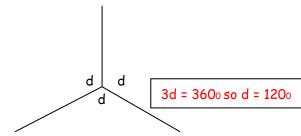
Example- unequal sharing of sweets

A gets 3 shares B gets 4 shares


=> 3 sweets ×4


4 sweets Dx


6/15 Express missing numbers


algebraically

An unknown number is given a letter

6/15 Use a word formula

Example: -Time to cook a turkey
Cook for 45min per kg weight
Then a further 45min

For a 6kg turkey, follow the formula:

 $45min \times 6 + 45min$

=270min + 45min

=315min

= 5h 15min

6/16 Number sequences

• Understand position and term

1 9	2	3	4				
3 ₽	7	11	15				
3	3	7	7 11				

Term to term rule = +4

Position to term rule is $\times 4 - 1$

(because position $1 \times 4 - 1 = 3$)

 $nth term = n \times 4 - 1 = 4n - 1$

• Generate terms of a sequence

If the nth term is 5n + 1

 1_{st} term $(n=1) = 5 \times 1 + 1 = 6$

2nd term (n=2) = 5x2 + 1 = 11

3rd term (n=3) = 5x3 + 1 = 16

6/17 <u>Possible solutions of a number</u> sentence

Example: x and y are numbers

Rule: x + y = 5

Possible solutions: x = 0 and y = 5

x = 1 and y = 4

x = 2 and y = 3

x = 3 and y = 2

x = 4 and y = 1

x = 5 and y = 0

6/18 Convert units of measure METRIC

When converting measurements follow these rules:

- When converting from a larger unit to a smaller unit we multiply (x)
- When converting from a smaller unit to a larger unit we divide (÷)

UNITS of LENGTH

10mm = 1cm

100cm = 1m

1000m = 1km

UNITS of MASS

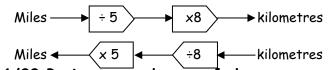
1000q = 1kq

100cl = 1litre

1000g = 1kg 1000kg = 1tonne

UNITS of VOLUME 1000ml = 1 litre UNITS of TIME

60sec = 1 min


60min = 1 hour

24h = 1 day

365days = 1 year

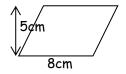
6/19 Convert units of measure METRIC/IMPERIAL

LEARN: 5 miles = 8km

6/20 Perimeter and area of shapes

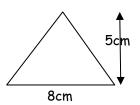
Shapes can have the SAME area but different perimeters

The area of each shape is 9 squares


111	The area of each shape is 9 squares								
							В		
		Α							
		U							

Perimeter of each shape is different A - 12: B - 14: C - 16

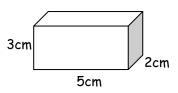
6/21 Area of parallelogram & triangle


Area of parallelogram

Area of parallelogram = b x h = 8 x 5 = 40cm²

 \circ Area of triangle ($\frac{1}{2}$ a parallelogram)

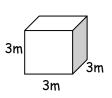
Area of triangle = $b \times h$



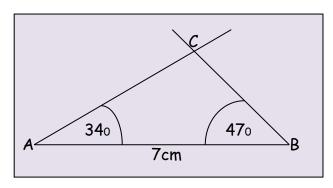
6/22 Volume

Volume of cuboid

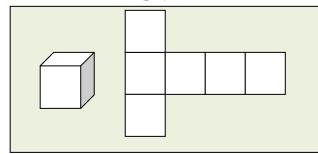
Volume = $1 \times w \times h$ = $5 \times 3 \times 2$


= 30cm³

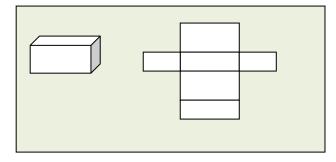
Volume of cube


Volume = $1 \times w \times h$ = $3 \times 3 \times 3$

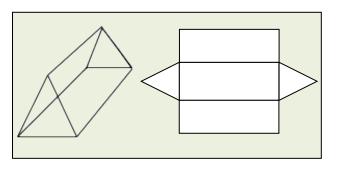
 $= 27 \text{m}_3$


Example: Triangle with side and angles given

- o Draw line AB = 7cm
- Draw angle 340 at point A from line AB
- o Draw angle 470 at point B from line AB
- o Extend to intersect the lines at C



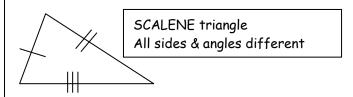
6/23 Construct 3D shapes

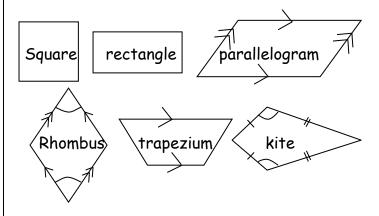

CUBE & its net

CUBOID & its net

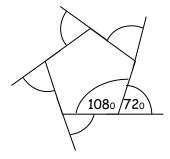
TRIANGULAR PRISM & its net

6/23 Construct 2D shapes


TRIANGLES - sum of angles = 1800


ISOSCELES triangle 2 equal sides & 2 equal angles

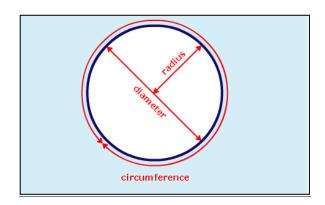
EQUILATERAL triangle 3 equal sides & ALL angles 600



QUADRILATERALS - sum of angles = 3600

REGULAR POLGONS - all sides the same

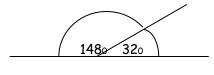
- Polygons have straight sides
- o Polygons are named by the number sides
 - 3 sides triangle
 - 4 sides quadrilateral
 - 5 sides pentagon
 - 6 sides hexagon
 - 7 sides heptagon
 - 8 sides octagon
 - 9 sides nonagon
 - 10 sides decagon



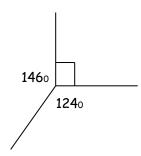
- o interior & exterior angle add up to 1800
- o the interior angles add up to:

Triangle =1 x 1800 = 1800 Quadrilateral =2 x 1800 = 3600 Pentagon =3 x 1800 = 5400 Hexagon =4 x 1800 = 7200 etc

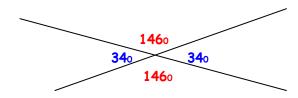
6/25 Parts of a circle


- The circumference is the distance all the way around a circle.
- The diameter is the distance right across the middle of the circle, passing through the centre.
- The radius is the distance halfway across the circle.
- The radius is always half the length of the diameter. $(d = 2 \times r)$ or $(r = \frac{1}{2} \times d)$

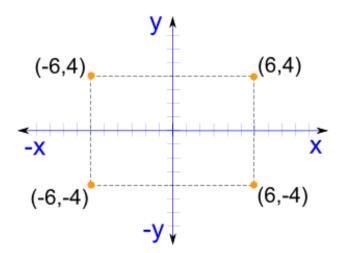
Sum of exterior angles is always 360o

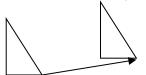

6/26 Angles and straight lines

o Angles on a straight line add up to 1800



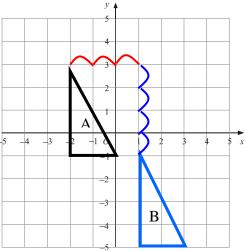
1480 + **32**0 = **180**0


o Angles about a point add up to 3600


o Vertically opposite angles are equal

6/27 Position on a co-ordinate grid

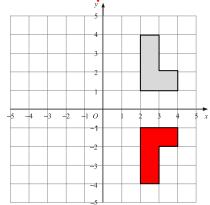
o Translation - A shape moved along a line

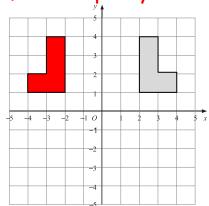


Example - Move shape A 3 right & 4 down

Can also be written as a vector 3

Right

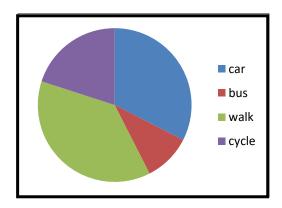

Down


Notice:

- o The new shape stays the same way up
- The new shape is the same size

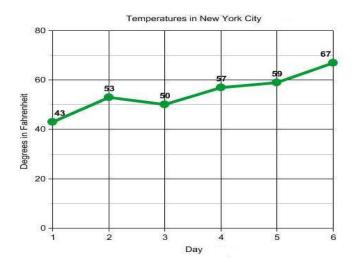
Reflect a shape in x-axis

o Reflect a shape in y-axis



6/29 Graphs

o Pie chart


Transport	Frequency	Angle		
Car	13	13 × 9=117 ₀		
Bus	4	4 × 9=360		
Walk	15	15 × 9=135		
Cycle	8	8 × 9=72		

Total frequency = 40 $3600 \div 40 = 90$ per person

o Line graph

Line graphs show changes in a single variable - in this graph changes in temperature can be observed.

The mean is usually known as the average.

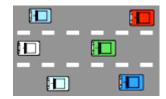
The mean is not a value from the original list.

It is a typical value of a set of data

Mean = total of measures ÷ no. of measures

e.g.- Find mean speed of 6 cars travelling on a road

Car 1 - 66mph


Car 2 - 57mph

Car 3 - 71mph

Car 4 - 54mph

Car 5 - 69mph

Car 6 - 58mph

Mean = 66+57+71+54+69+58

6

= <u>375</u>

6

= 62.5mph

Mean average speed was 62.5mph